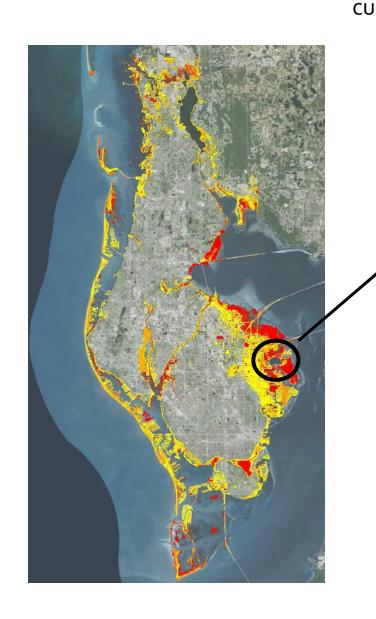


Kelli Hammer Levy, Division Director

Overview

- Local challenges
- Climate Science Advisory Panel (CSAP)
 - Regional projections
 - Guidance
- Accounting for SLR in capital improvements examples
- Pinellas County guidance
- Next steps & Other planning efforts
- Questions



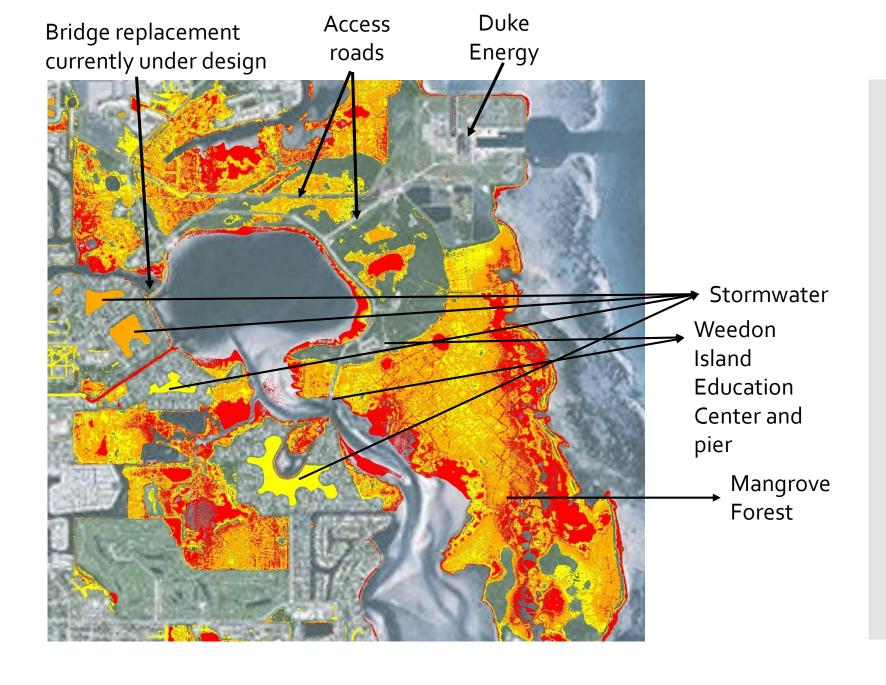
Elena 1985

A resilient Tampa Bay, one that acknowledges and responds to coastal vulnerabilities, is one that can support the economic, environmental, and cultural prosperity of this unique and highly valuable region

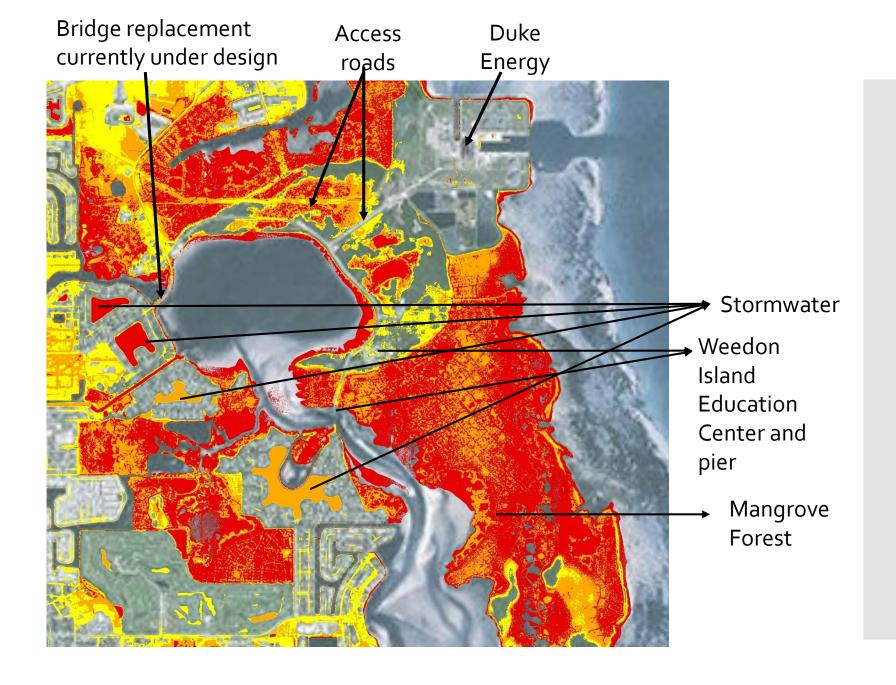
Local Challenges

currently under design Energy roads

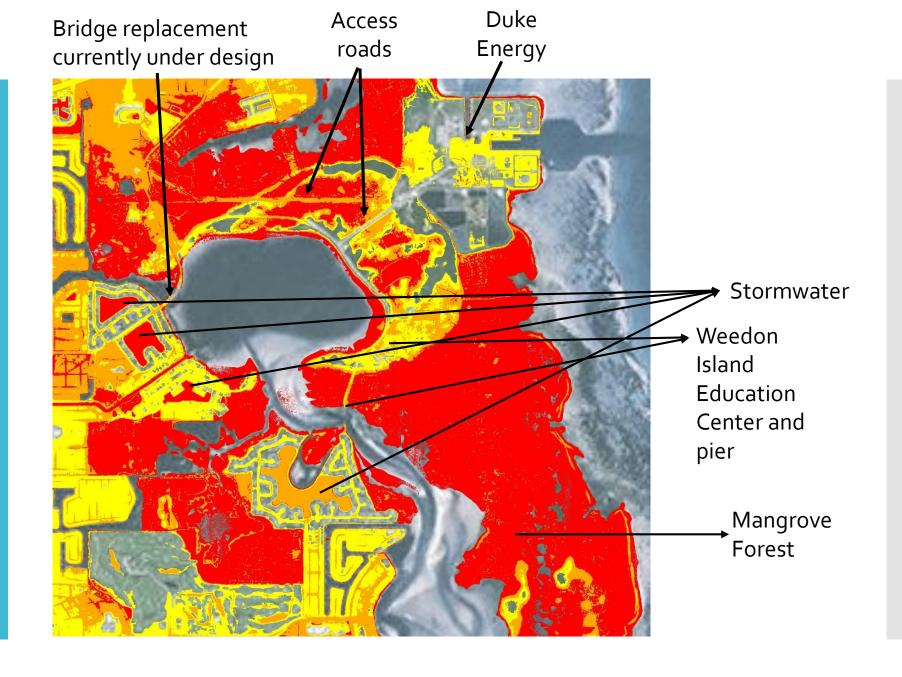
Access

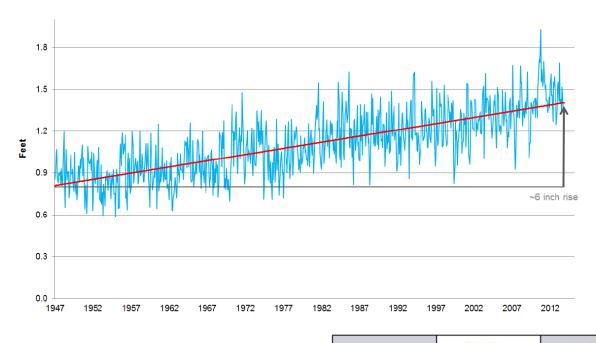

Duke

Bridge replacement


2025 Inundation Maps (without tidal impacts and no storm surge)

- Intermediate Low (o o.38ft)
- Intermediate High (o.38-o.6ft)
- High High (o.6 o.84ft)


Local Challenges 2050


Local Challenges 2075

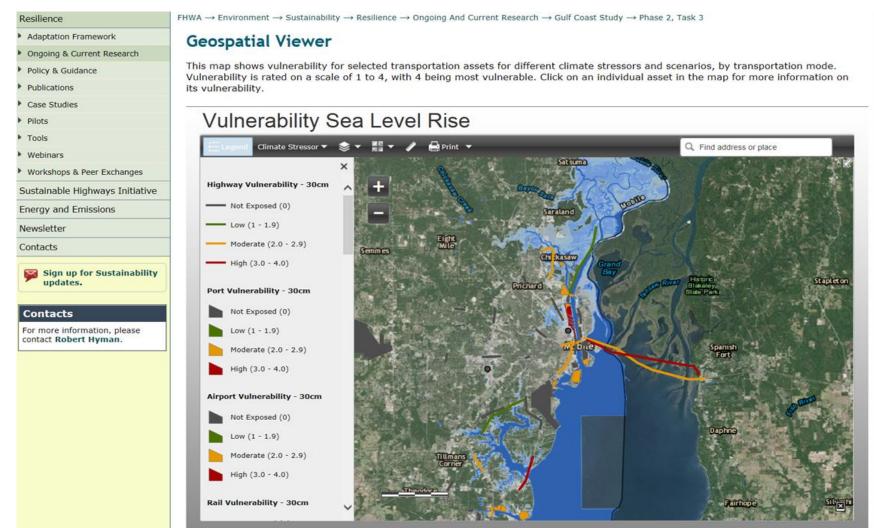
Local Challenges 2100

CSAP Regional Projections for Tampa Bay

Monthly MSL (ft)

Year	NOAA Low (Feet)	NOAA Int Low (Feet)	NOAA Int High (Feet)	NOAA High (Feet)
199213	0.00	0.00	0.00	0.00
2025	0.28	0.38	0.60	0.84
2035	0.37	0.53	0.90	1.31
2050	0.50	0.80	1.46	2.22
2065	0.63	1.10	2.15	3.35
2075	0.71	1.33	2.68	4.23
2100	0.93	1.97	4.26	6.89

CSAP Guidance

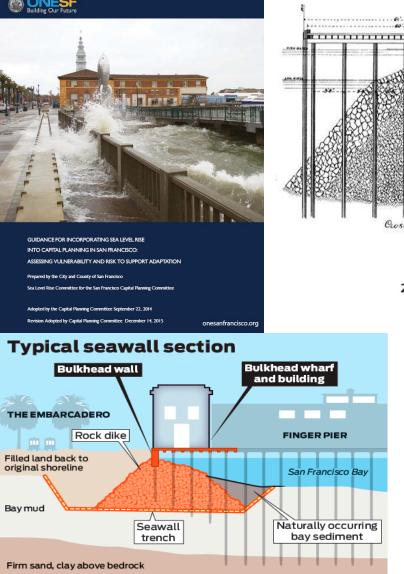

- Use SLR scenarios to inform policy and planning
- In developing adaptation strategies consider
 - Multiple scenarios
 - Location
 - Lifespan of project
 - Project cost
 - Criticality of function
- Make decisions based on an acceptable level of risk
- Projections of SLR should be consistent with present and future National Climate Assessment estimates and methods
- Projections of SLR should be regionally corrected using the St. Petersburg tide gauge data

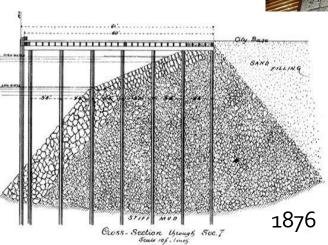
What is going on out there?

What resources are available to guide local governments on how to incorporate SLR in capital planning efforts?

Accounting for SLR in Capital Improvements

U.S. Department of Transportation, Federal Highway Administration Gulf Coast Study


State Owned and Critical Facility Exposures to Sea Level Rise

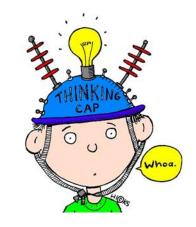

	State Owned Facilities		Critical Facilities			Cauaro mi	
County/City	High Risk (0-	Moderate Risk (2-	Low Risk	High Risk (0-	Moderate Risk	Low Risk	Square mi.
	2 ft RSLR)	5 ft RSLR)	(5-10 ft RSLR)	2 ft RSLR)	(2-5 ft RSLR)	(5-10 ft RSLR)	(land area)
Anne Arundel County	7	4	6	151	92	95	415.9
Baltimore County	6	1	4	70	55	122	598.6
Calvert County	1	0	20	24	22	13	215.2
Caroline County	0	0	333	47	8	48	320.1
Cecil County	0	0	2	57	21	22	348.1
Charles County	0	0	0	28	6	6	461.0
Dorchester County	5	14	45	123	56	39	557.5
Harford County*	-	-	-	-	-	-	440.4
Kent County	0	1	1	44	33	24	279.4
Prince George's County*	-	-	_	_	_	_	485.4
Queen Anne's County	0	1	9	75	54	49	372.2
Somerset County	8	55	21	69	66	36	327.2
St. Mary's County	150	76	3	40	27	42	361.3
Talbot County	1	0	23	61	33	40	269.1
Wicomico County	0	19	3	49	42	56	377.2
Worcester County	2	98	1	71	180	148	473.2
City of Baltimore*	-	_	_	_	-	-	80.0
Grand Total	180	269	471	909	695	740	6381.9

^{*}Vulnerability data not available from MDDNR

Accounting for SLR in Capital Improvements

One San Francisco

2016


A study commissioned by the port warns that the seawall is in danger of severe damage in a major earthquake. The price tag for strengthening it — and raising the height in anticipation of sea level rise — could reach \$5 billion, according to a memo from port staff.

The seawall along the Embarcadero, with buildings in the background on filled land that once was shallow bay. Michael Macor, The Chronicle

SLR Planning for CIP where do you start?

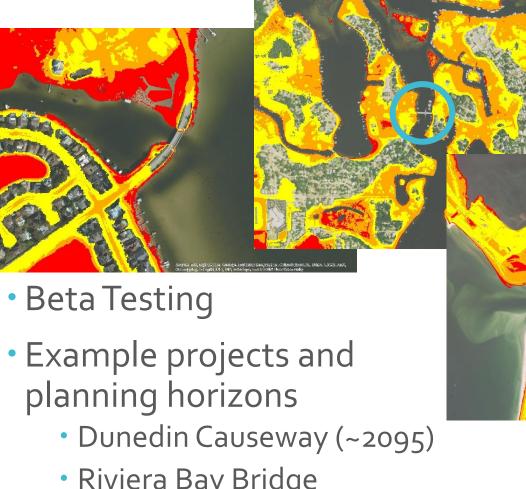
- 1. Research who is doing what and what information is available
- 2. Don't reinvent the wheel
- 3. Develop a framework
- 4. Engage others
- 5. Provide clear and easy to understand guidance
- 6. Test, adjust, test, adjust...

- What information is needed to use the tool
- What questions are asked
- How is the outcome used
- Level of authority (Accountability)

- Pre-check
 - Location
 - SLR vulnerability zone
 - Project cost
- SLR Checklist
 - Project information
 - Asset type
 - Remaining or future functional lifespan
 - Planning horizon

- Vulnerability Assessment
 - Exposure
 - Site specific information
 - Lowest ground elevation (LGE) and MHHW
 - SLR at the end of the planning horizon
 - Questions
 - MHHW LGE = X
 - Vulnerability to permanent inundation during functional lifespan during various scenarios
 - Vulnerability to temporary flooding from 100-yr coastal flood
 - Is the project seaward of the CCCL?

- Vulnerability Assessment
 - Sensitivity
 - Low minimal impact
 - Medium ability to maintain most functions
 - High complete loss of function
 - Adaptive Capacity
 - High- tolerance to flooding impacts is good
 - Medium response needed to restore function
 - Low no ability to adapt



- Risk Assessment
 - Anticipated level of damage
 - Low Asset is easily repaired/replaced
 - Medium Complete replacement or costly repairs
 - High Asset cannot be replaced at same location
 - Service Disruption
 - Low No loss of service
 - Medium Loss of service does not threaten public health and safety (non-critical)
 - High Loss of service is high and a threat to public welfare

- Risk Assessment
 - Cost to replace/repair for public health and safety
 - Low No or little cost to restore asset
 - Medium Moderate costs
 - High High costs to fully replace or high secondary costs
- Adaptation strategy & Project Production Team Review
- Department Certification

 Riviera Bay Bridge Replacement (~2095)

 Beckett Bridge Replacement (~2095)

 Starkey Rd – Bryan Dairy to Ulmerton (~2097)

Next Steps and Other Efforts

- Next Steps
 - Finish testing and feedback on v.1
 - Deploy v.2 to Project Production Teams
 - Share
- Vulnerability Assessment of Critical Infrastructure
 - Complete ~2019/2020
 - Critical infrastructure identified
 - GIS support tool SLR + storm surge/tide cycles
 - Adaptation plans and costs analysis for priority areas
 - Update capital planning tool
- New stormwater code effective April 1, 2017
 - New tailwater conditions to address SLR
- Working groups
 - CSAP
 - SPC Suncoast Sea Level Rise Collaborative
 - Next event, May 24th: Insuring Uninsured Flood Risk: Flood, Sea Level Rise, and Natural Catastrophes

https://solutions.spcollege.edu/

Questions

Kelli Hammer Levy <u>klevy@pinellascounty.org</u> 727.464.3317

Visit us on Facebook: Pinellas County Environmental News